Number-phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra

نویسندگان

  • G. R. Honarasa
  • M. K. Tavassoly
چکیده

In this letter, the ”number-phase entropic uncertainty relation” and the ”number-phase Wigner function” of generalized coherent states associated to a few solvable quantum systems with nondegenerate spectra are studied. We also investigate time evolution of ”number-phase entropic uncertainty” and ”Wigner function” of the considered physical systems with the help of temporally stable Gazeau-Klauder coherent states. keyword: solvable quantum systems, nonlinear coherent states, entropic uncertainty relation, number-phase Wigner function PACS: 42.50.Dv, 03.65.-w

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A transform of complementary aspects with applications to entropic uncertainty relations

Even though mutually unbiased bases and entropic uncertainty relations play an important role in quantum cryptographic protocols, they remain ill understood. Here, we construct special sets of up to 2n+1 mutually unbiased bases MUBs in dimension d=2n, which have particularly beautiful symmetry properties derived from the Clifford algebra. More precisely, we show that there exists a unitary tran...

متن کامل

Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach

In this paper we study the quantum phase properties of ”nonlinear coherent states” and ”solvable quantum systems with discrete spectra” using the Pegg-Barnett formalism in a unified approach. The presented procedure will then be applied to few special solvable quantum systems with known discrete spectrum as well as to some new classes of nonlinear oscillators with particular nonlinearity functi...

متن کامل

A Wigner distribution function for finite oscillator systems

We define a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum. The distribution function is thus defined on discrete phase-space, i.e. on a finite discrete square grid. These discrete Wigner functions possess a number of properties similar to the Wigner function for a continuous quant...

متن کامل

Deriving the Qubit from Entropy Principles

We provide an axiomatization of the simplest quantum system, namely the qubit, based on entropic principles. Specifically, we show: The qubit can be derived from the set of maximumentropy probabilities that satisfy an entropic version of the Heisenberg uncertainty principle. Our formulation is in phase space (following Wigner [41]) and makes use of Rényi [32] entropy (which includes Shannon [33...

متن کامل

Almost-periodic time observables for bound quantum systems

It is shown that a canonical time observable may be defined for any quantum system having a discrete set of energy eigenvalues, thus significantly generalising the known case of time observables for periodic quantum systems (such as the harmonic oscillator). The general case requires the introduction of almost-periodic probability operator measures (POMs), which allow the expectation value of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009